Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

# The Global Financial Cycle Meets Global Imbalances

Julien Acalin

Department of Economics, Johns Hopkins University

NBER International Finance and Macroeconomics Program March 24, 2023

Empirical Evidence

Conclusion O

# Motivation

- Large, internationally active banks, at the center of global financial system (Gabaix and Maggiori 2015, Bruno and Shin 2015)
- Global Financial Cycle (Rey, 2013): Global co-movement in asset prices, gross capital flows, banks' leverage
- ▶ What are the implications for net capital flows, i.e. the current account?
  - a) **Country-level:** reflect real effects (consumption, investment) Current account as natural link between financial and real outcomes:

$$CA = \underbrace{O - I}_{Net \ Flows} = S - Inv$$

b) Global-level: imbalances may imply systemic risks to the world economy

Multi-Country Model

Empirical Evidence

Conclusion O

# A First Look at Leverage and Global Imbalances

#### Figure: Leverage and Global Imbalances



Note. U.S. Broker-Dealer leverage (right-axis) is computed as assets over equity. Global imbalances (left-axis) are computed as the quarterly sum of the absolute value of current account balances across countries, normalized by world nominal GDP. Source: Flows of Funds, IMF BOP, author's calculations.

Empirical Evidence

## This Paper - Overview

#### **Research Questions:**

- Do fluctuations in the leverage of global banks affect the current account?
- Which characteristics can explain different sensitivities across countries?

# This Paper - Overview

#### **Research Questions:**

- Do fluctuations in the leverage of global banks affect the current account?
- Which characteristics can explain different sensitivities across countries?

#### Outline:

- Theory: Tractable multi-country model with local and global banks.
- Empirical: Panel regressions using a Granular IV for global banks' leverage.

# This Paper - Overview

#### **Research Questions:**

- Do fluctuations in the leverage of global banks affect the current account?
- Which characteristics can explain different sensitivities across countries?

#### Outline:

- Theory: Tractable multi-country model with local and global banks.
- Empirical: Panel regressions using a Granular IV for global banks' leverage.

#### Main Contributions:

- ▶ 1) Leverage has a differentiated impact on current account balances.
- > 2) The impact depends on the net external position against global banks.
- 3) Impact through investment, not savings.

Paper provides a bridge between Global Financial Cycle and Global Imbalances.

Empirical Evidence

Conclusion 0

### **Related Literature**

#### Global Financial Cycle

Rey (2013), Bruno and Shin (2015), Miranda-Agrippino and Rey (2015), Cerutti et al. (2019), Jeanne and Sandri (2020), Caballero and Simsek (2020)

Current Account Determinants and Global Imbalances Razin (1993), Kraay and Ventura (2000), Aguiar and Gopinath (2007), Mendoza et al. (2009), Milesi-Ferretti and Tille (2014), Jiang et al. (2022)

#### The Role of Global Banks

Cetorelli and Goldberg (2012), Boissay et al. (2016), Gertler et al. (2016), Sheng (2021), Cao et al. (2021), Morelli et al. (2022)

#### Macroeconomic Effects of Capital Flows

Blanchard et al. (2016), Gopinath et al. (2017), Cesa-Bianchi et al. (2018), Converse et al. (2020), Davis and van Wincoop (2021)

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

# Outline

Introduction

Stylized Facts

Multi-Country Model

**Empirical Evidence** 

Conclusion

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion 0

# **Stylized Facts**

Empirical Evidence

## Stylized Facts

Sources: Capital IQ - Bloomberg - BIS LBS - IMF BOP.

- Stylized Fact #1 (Leverage): Large global banks have a higher and more volatile leverage than other banks. Leverage List
- Stylized Fact #2 (Counter-party): Global banks interact mainly with other banks for their cross-border operations, through loans and deposits. Counter-party
- Stylized Fact #3 (External positions): There is a large dispersion of net external positions vis-a-vis global banks. The distinction between creditor and debtor countries differs from the traditional distinction between AEs and EMEs. Positions
- Stylized Fact #4 (Gross Flows): Gross Banking Inflows and Outflows are positively correlated. Correlations

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion 0

# Multi-Country Model of Global Banking

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

### Model - Overview

Two-period (t = 1, 2), N countries (indexed by i), single-good economy.

### Model - Overview

- Two-period (t = 1, 2), N countries (indexed by i), single-good economy.
- In each country, a representative Household:
  - Receives endowment in period 1, saves via local banks' safe deposits.

### Model - Overview

- Two-period (t = 1, 2), N countries (indexed by i), single-good economy.
- In each country, a representative Household:
  - Receives endowment in period 1, saves via local banks' safe deposits.
- ▶ In each country, unit continuum of Local Banks (indexed by *i*, *j*):
  - Ex-ante identical. Raise deposits from domestic Households, have access to a risky bank-specific project with return:

$$R^{i,j} = R^i + \epsilon^{i,j}$$

**Outside Friction**: Can lend to or borrow from Global Banks only. (Gertler and Kiyotaki 2010) Evidence

### Model - Overview

- Two-period (t = 1, 2), N countries (indexed by i), single-good economy.
- In each country, a representative Household:
  - Receives endowment in period 1, saves via local banks' safe deposits.
- ▶ In each country, unit continuum of Local Banks (indexed by *i*, *j*):
  - Ex-ante identical. Raise deposits from domestic Households, have access to a risky bank-specific project with return:

$$R^{i,j} = R^i + \epsilon^{i,j}$$

**Outside Friction**: Can lend to or borrow from Global Banks only. (Gertler and Kiyotaki 2010) Evidence

Across countries, unit continuum of Global Banks (share s<sup>i</sup> in country i):

• Global financial inter-mediation: Reallocate funds after  $R^{i,j}$  revealed, subject to an exogenous **leverage constraint**  $\lambda$ .

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

# Timeline

1. Period 1:

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

# Timeline

- 1. Period 1:
  - 1.1 At the beginning of period 1, local banks raise deposits from their domestic household in the **retail market**.

Multi-Country Model

Empirical Evidence

Conclusion O

# Timeline

- 1. Period 1:
  - 1.1 At the beginning of period 1, local banks raise deposits from their domestic household in the **retail market**.
  - 1.2 At the end of period 1, the stochastic returns are revealed and global banks reallocate capital across local banks worldwide, by borrowing and lending on the **wholesale market**, subject to a **leverage constraint**.

Multi-Country Model

Empirical Evidence

Conclusion O

# Timeline

- 1. Period 1:
  - 1.1 At the beginning of period 1, local banks raise deposits from their domestic household in the **retail market**.
  - 1.2 At the end of period 1, the stochastic returns are revealed and global banks reallocate capital across local banks worldwide, by borrowing and lending on the **wholesale market**, subject to a **leverage constraint**.
- 2. Period 2:

The projects pay off and output is consumed by banks and households.

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

### Model - Overview



Note. This chart provides a schematic representation of the model for the case where N = 3,  $s^A = 1$ , and  $R^C < R^A < R^B$ .

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

### Households

Households in country *i* maximize:

$$\max_{d^i} U^i = u(c_1^i) + eta \mathbb{E}[c_2^i]$$

Their budget constraints in period 1 and 2 are given by:

$$egin{aligned} c_1^i + d^i &= W \ c_2^j &= R_H^i d^i \end{aligned}$$

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

# Projects' Returns

The project of local bank *j* located in country *i* produces output according to:

$$y^{i,j} = \left(\underbrace{\underline{R}^{i} + \epsilon^{i,j}}_{\equiv R^{i,j}}\right) k^{i,j}$$

where  $R^i$  and  $\epsilon^j$  are independent random variables.  $R^i \in [\underline{R}; \overline{R}], \ \epsilon^{i,j} \in [-\sigma; \sigma]$ 

Notation:

G(x) is the global c.d.f. of projects' returns at the end of period 1  $F_i(x)$  is the c.d.f. of projects' returns at the end of period 1 in country *i*.

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion

### Local Banks

**Retail operations.** At the beginning of period 1, before uncertainty is resolved, local banks compete to raise deposits from their home households:

$$\max_{d^{i,j}} \mathbb{E}[\pi^{i,j}]$$

**Interbank operations.** At the end of period 1, after uncertainty is resolved, local banks set their interbank borrowing  $d_M^{i,j}$  and lending  $l_M^{i,j}$ :

$$\max_{\substack{d_M^{i,j} \ge 0, l_M^{i,j} \ge 0}} \pi^{i,j} = \left(\underbrace{\mathbb{R}^i + \epsilon^{i,j}}_{\equiv \mathbb{R}^{i,j}}\right) k^{i,j} - \mathbb{R}^i_H d^{i,j} + \mathbb{R}^i_M I_M^{i,j} - \mathbb{R}^d_M d_M^{i,j}$$

subject to a balance sheet identity:

$$k^{i,j} + l_M^{i,j} = E_L + d^{i,j} + d_M^{i,j}$$

and a technological constraint:

$$k^{i,j} \leq \overline{k}$$

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

### Global Banks

Global banks set their lending and borrowing to maximize their period 2 profits:

$$\max_{I^g_M, d^g_M} \pi^g = R^d_M I^g_M - R^l_M d^g_M$$

subject to a balance sheet identity:

$$I_M^g = E_G + d_M^g$$

and a leverage constraint:

$$d_M^g \leq \lambda$$

There is a spread between lending and borrowing rates if leverage is binding.

Evidence

Empirical Evidence

Conclusion 0

# Competitive Equilibrium

The competitive equilibrium is such that:

- (i) Global banks set I<sup>g</sup><sub>M</sub> and d<sup>g</sup><sub>M</sub> so as to maximize their profits subject to their balance sheet and leverage constraints, taking the interbank rates as given;
- (ii) Local banks raise  $d^{i,j}$  so as to maximize their expected profits, and set  $I_M^{i,j}$  and  $d_M^{i,j}$  contingent on their productivity parameter, taking the interbank rates and the bank deposit rate as given;
- (iii) Households set d<sup>i</sup> so as to maximize their utility, taking the bank deposit rate as given;
- ▶ (iv) R<sup>I</sup><sub>M</sub>, R<sup>d</sup><sub>M</sub>, and R<sup>i</sup><sub>H</sub> clear the global wholesale market and the local retail markets for household deposits in all countries.

Multi-Country Model

Empirical Evidence

Conclusion O

# Equilibrium: Wholesale

Focus on symmetric equilibria:  $d^{i,j} = d^i = d \ \forall i,j$ 

#### Equilibrium in the wholesale market.

The supply of funds by local bank j in country i is given by:

$$I_M^{i,j} = \left\{ egin{array}{cc} E_L + d & ext{if } R^{i,j} \leq R_M^l \ 0 & ext{otherwise} \end{array} 
ight.$$

The demand for funds by local bank j in country i is given by:

$$d_M^{i,j} = \left\{ egin{array}{cc} ar{k} - E_L - d & ext{if } R^{i,j} \geq R_M^d \ 0 & ext{otherwise} \end{array} 
ight.$$

If  $R_{M}^{\prime} \leq R^{i,j} \leq R_{M}^{d}$  then the local bank is inactive on wholesale market

| Introduction |  |
|--------------|--|
| 00000        |  |

Multi-Country Model

Empirical Evidence

Conclusion 0

### **Balance Sheets**

| Local Banks       |             |                    |       |             |             |  |
|-------------------|-------------|--------------------|-------|-------------|-------------|--|
| High-Return Avera |             | ge-Return          | Low-R | eturn       |             |  |
| Assets            | Liabilities | Assets Liabilities |       | Assets      | Liabilities |  |
| Ī                 | $E_L$       | k <sup>i,j</sup>   | $E_L$ |             | $E_L$       |  |
|                   | d           |                    | d     | $I_M^{i,j}$ | d           |  |
|                   | $d_M^{i,j}$ |                    |       |             |             |  |

| Global Banks                |                |  |  |
|-----------------------------|----------------|--|--|
| Assets Liabilities          |                |  |  |
| I <sup>g</sup> <sub>M</sub> | E <sub>G</sub> |  |  |
|                             | $d_M^g$        |  |  |

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion

### Equilibrium: Wholesale

Equilibrium in the wholesale market.

The equilibrium condition is:



In a symmetric equilibrium, the equilibrium condition simplifies to:

$$E_G + N(E_L + d) G(R_M') = N(\overline{k} - E_L - d) \left(1 - G(R_M^d)\right)$$
(2)

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

### Equilibrium: Wholesale

#### Figure: Inter-bank Borrowing and Lending Rates



Note. This figure shows the inter-bank borrowing (red line) and lending (blue line) rates as a function of global banks' leverage, in the special case where  $R^i = \bar{R} \forall i$ .  $\lambda^*$  denotes the leverage level such that the constraint of global banks' does not bind.

Empirical Evidence

Conclusion O

### Equilibrium: Retail

#### Equilibrium in the retail market for deposits.

The supply of deposits  $d^i$  is given by households' first-order condition:

$$d^i = W - rac{1}{eta R_H^i}$$

The marginal expected value of deposit is:

$$\mathbf{R}^{\mathbf{e}} \equiv R_{M}^{\prime}G(R_{M}^{\prime}) + \mathbb{E}\left[R^{i,j}|R_{M}^{\prime} \leq R^{i,j} \leq R_{M}^{d}\right]\left[G(R_{M}^{d}) - G(R_{M}^{\prime})\right] + R_{M}^{d}\left[1 - G(R_{M}^{d})\right]$$

Under perfect competition, Local banks' demand for deposits is given by:

$$\mathbf{R}^{\mathbf{e}} = R_{H}^{i}$$

Unique equilibrium domestic bank deposits  $d^*$  that solves the fixed-point problem:

$$d^* = W - \frac{1}{\beta \mathbf{R}^{\mathbf{e}}(d^*)} \tag{3}$$



Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion 0

# Implications for Gross and Net Capital Flows

Multi-Country Model

Empirical Evidence

Conclusion

### Special case: Gross Flows Respond to Leverage, not Net

**Special case.**  $R^i = R \forall i$ . This implies  $F_i(.) = G(.)$ .

The capital outflows from country i are given by:

$$O^{i} = \underbrace{\left(1 - s^{i}\right)\frac{\lambda}{N}}_{\text{from Local Banks}} + \underbrace{s^{i}\left(E_{G} + \lambda\right)\left(\frac{N - 1}{N}\right)}_{\text{from Global Banks}}$$

The capital inflows to country i are given by:



The net capital outflows from country *i*, are given by:

$$N^{i} \equiv O^{i} - I^{i} = E_{G} \left[ s^{i} - \frac{1}{N} 
ight]$$

Multi-Country Model  Empirical Evidence

### General case: Gross Flows Increase in Leverage

Global economy:  $O = \int_{I} O^{i}$  and  $I = \int_{I} I^{i}$  are increasing in  $\lambda$  (**GFC**).

The gross outflows from country *i* are given by:

$$O^{i} = \underbrace{\left(1 - s^{i}\right) \frac{\lambda}{N} \frac{F_{i}(R_{M}^{i})}{G(R_{M}^{i})}}_{\text{form local Banks}} + \underbrace{s^{i}\left(E_{G} + \lambda\right) \left[\frac{N\left(1 - G(R_{M}^{d})\right) - \left(1 - F_{i}(R_{M}^{d})\right)}{N\left(1 - G(R_{M}^{d})\right)}\right]}_{\text{form local Banks}}$$

from Local Banks

from Global Banks

The gross inflows to country *i* are given by:

$$I^{i} = \underbrace{\left(1 - s^{i}\right) \frac{E_{G} + \lambda}{N} \frac{1 - F_{i}(R_{M}^{d})}{1 - G(R_{M}^{d})}}_{\text{to Local Banks}} + \underbrace{s^{i} \lambda \left[\frac{NG(R_{M}^{i}) - F_{i}(R_{M}^{i})}{NG(R_{M}^{i})}\right]}_{\text{to Global Banks}}$$

Multi-Country Model

Conclusion 0

# General case: Net Flows Respond to Leverage

#### Proposition 1.

The net capital outflows from country *i*, i.e. the current account, is given by:

$$N^{i} \equiv O^{i} - I^{i} = \frac{\lambda \xi^{i}}{N} + \frac{E_{G}}{N} \left[ s^{i} N - \frac{1 - F_{i}(R_{M}^{d})}{1 - G(R_{M}^{d})} \right]$$
(4)

where  $\xi^i = \left[\frac{F_i(R_M^I)}{G(R_M^I)} - \frac{1 - F_i(R_M^I)}{1 - G(R_M^I)}\right]$  measures country net external asset on global banks.

Country-specific:  $N^i$  is decreasing in  $\lambda$  iff  $\xi^i < 0$ .

Global economy:  $\int_i |N^i|$  is increasing in  $\lambda$  (Global Imbalances).

#### Proposition 2.

The differentiated response of the current account is driven by investment.

Evidence

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion 0

# **Empirical Evidence**

Empirical Evidence

Conclusion O

# **Regressions Specification**

Baseline panel regressions:

$$Y_{i,t} = c_i + \beta_0^i t + \beta_1 L_t + \frac{\beta_2 L_t}{P_{i,t-1}} + \beta_3 P_{i,t-1} + \alpha_1 \mathbb{X}_t + \beta_4 Y_{i,t-1} + \epsilon_{i,t}$$
(5)

- Y<sub>i,t</sub>: Current account, Net outflows, Investment, Savings (%GDP)
- L<sub>t</sub>: Global banks' leverage
- P<sub>i,t-1</sub>: Net external assets of residents of country i on global banks
- $X_t$ : World and Country real GDP growth, VIX

All specifications are estimated via OLS, include country fixed effects and country-specific linear time trend, and double-clustured standard errors by country and time.

**Predictions:**  $\beta_2$  (+) for CA and net outflows, (-) for investment, (0) for savings.

Variables and Sources

# Variables and Sources

Panel of 41 AEs and EMEs countries, quarterly data from 2000Q1-2019Q4.

#### Global variables:

- Global banks' leverage: Median leverage of 23 largest global banks. Leverage is defined as Assets/Equity (Capital IQ / Bloomberg)
- VIX, U.S. FFR (FRED)
- World and Country real GDP growth rates (IMF IFS)
- Country-specific variables:
  - Inflows, Outflows, Current Account (IMF BOP)
  - GDP, Investment (IMF IFS)
  - Positions vis a vis Global Banks, all sectors and banking sector (BIS)

Stylized Facts

Multi-Country Model

Empirical Evidence

Positions

Excl. Big 5

Conclusion O

### **Baseline Results**

|                                                                       | Dependent Variable (%GDP)  |                            |                     |                            |  |  |
|-----------------------------------------------------------------------|----------------------------|----------------------------|---------------------|----------------------------|--|--|
| Leverage: Median                                                      | Current Account            | Net Outflows               | Investment          | Savings                    |  |  |
| Period: Full Sample                                                   | (1)                        | (2)                        | (3)                 | (4)                        |  |  |
| Global Banks Leverage                                                 | 0.757***                   | 1.463***                   | -0.820***           | 0.086                      |  |  |
| # Net Assets on Global Banks                                          | [0.248]                    | [0.390]                    | [0.293]             | [0.357]                    |  |  |
| Controls<br>Country FE<br>Country-specific Time Trend<br>Observations | Yes<br>Yes<br>Yes<br>2,756 | Yes<br>Yes<br>Yes<br>2,753 | Yes<br>Yes<br>2,581 | Yes<br>Yes<br>Yes<br>2,561 |  |  |
| R-squared                                                             | 0.776                      | 0.526                      | 0.650               | 0.786                      |  |  |
| R-squared (within)                                                    | 0.233                      | 0.082                      | 0.128               | 0.056                      |  |  |

Pre-Post 2008

First-Diff

Robust standard errors in brackets

\*\*\* p< 0.01, \*\* p< 0.05, \* p< 0.1

Full table: Full Table

Robustness checks: Leverage

25 / 32

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

# Granular Instrumental Variable

Idea: Exploit heterogeneity in size, and remove common shocks. Factor analysis:

$$\Delta L_{jt} = \alpha_j + \Lambda F_t + \epsilon_{jt}$$

The GIV is constructed as the difference between the share-weighted and the equallyweighted idiosyncratic shocks to banks' leverage:

$$z_t = \sum_j s_j \epsilon_{jt} - \underbrace{\frac{1}{N} \epsilon_{jt}}_{=0}$$

The leverage factor is recovered by taking the cumulative sum of the GIV:

$$Z_T = \sum_{t=0}^T z_t$$

GIV highly correlated with Leverage, uncorrelated with VIX and RGDP growth Correlations

Multi-Country Model

Empirical Evidence

# Additional Results - GIV

|                              | Dependent Variable (%GDP) |              |            |         |  |  |
|------------------------------|---------------------------|--------------|------------|---------|--|--|
| Leverage: GIV                | Current Account           | Net Outflows | Investment | Savings |  |  |
| Period: Full Sample          | (1)                       | (2)          | (3)        | (4)     |  |  |
| Global Banks Leverage        | 1.014**                   | 1.939***     | -1.185***  | 0.103   |  |  |
| # Net Assets on Global Banks | [0.388]                   | [0.546]      | [0.413]    | [0.624] |  |  |
| Controls                     | Yes                       | Yes          | Yes        | Yes     |  |  |
| Country FE                   | Yes                       | Yes          | Yes        | Yes     |  |  |
| Country-specific Time Trend  | Yes                       | Yes          | Yes        | Yes     |  |  |
| Observations                 | 2,396                     | 2,394        | 2,252      | 2,241   |  |  |
| R-squared                    | 0.778                     | 0.527        | 0.659      | 0.791   |  |  |
| R-squared (within)           | 0.198                     | 0.063        | 0.126      | 0.050   |  |  |

Robust standard errors in brackets

\*\*\* p< 0.01, \*\* p< 0.05, \* p< 0.1

Robustness checks: Excl. Lag Positions Controls Excl. Big 5

# Global Leverage Meets Imbalances: Country-specific

#### Medium-run:

Higher net debtors experience larger **increase** in net liabilities during upside GFC. Higher net debtors experience larger **decrease** in net liabilities during downside GFC.

To test those predictions, I run the following regressions:

$$P_{i,0708} - P_{i,0405} = \alpha_0 + \beta^B P_{i,0405} + \epsilon_i$$
(6)

$$P_{i,1415} - P_{i,0708} = \alpha_1 + \beta^A P_{i,0708} + \epsilon_i$$
(7)

where  $P_{i,t}$  is the net external asset positions of country *i* on G-banks during years *t* **Predictions:**  $\beta_B$  (+),  $\beta_A$  (-).

Stylized Facts

Multi-Country Model

Empirical Evidence

Conclusion O

### Global Leverage Meets Imbalances: Country-specific

Figure: Change in Net External Position vis a vis Global Banks



Note. This chart shows a scatter plot of the change in a country's net external asset position vis a vis global banks between 2014/2015 and 2007/2008 against its net external asset position vis a vis global banks in 2007/2008.

## Global Leverage Meets Imbalances: Country-specific

|                            | Dependent            | Dependent Variable: Change in Net Assets on Global Banks |                      |                       |  |  |
|----------------------------|----------------------|----------------------------------------------------------|----------------------|-----------------------|--|--|
| Net Assets on Global Banks | Total pre-GFC<br>(1) | Total post-GFC<br>(2)                                    | Banks pre-GFC<br>(3) | Banks post-GFC<br>(4) |  |  |
| Total 2004-2005            | 0.179**<br>[0.076]   |                                                          |                      |                       |  |  |
| Total 2007-2008            | []                   | -0.595***                                                |                      |                       |  |  |
| Banks 2004-2005            |                      | [0.066]                                                  | 0.269***             |                       |  |  |
| Banks 2007-2008            |                      |                                                          | [0.000]              | -0.667***<br>[0.075]  |  |  |
| Constant                   | -0.031**<br>[0.014]  | -0.045***<br>[0.016]                                     | -0.028***<br>[0.009] | -0.027**<br>[0.011]   |  |  |
| Observations<br>R-squared  | 41<br>0.124          | 41<br>0.673                                              | 41<br>0.194          | 41<br>0.669           |  |  |

Robust standard errors in brackets

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Note. This table shows the output of a cross-country regression of the change in net total assets on global banks versus the initial net total assets on global banks.

Empirical Evidence

Conclusion O

### Global Leverage Meets Imbalances: Global Economy

Figure: Actual versus Predicted Global Imbalances



Note. This chart shows the actual and predicted values of global imbalances. Predicted global imbalances are computed as the quarterly sum of the absolute value of predicted current account balances obtained from the baseline panel regression across countries, normalized by world nominal GDP. Source: IMF BOP, author's calculations.

Empirical Evidence



# Conclusion

- GFC and Global Imbalances largely studied separately.
- ▶ I propose a multi-country model with both local and global banks.
- In model and data, changes in global banks' leverage not only has impact on gross flows, but also on net flows

#### $\rightarrow$ GFC meets Global Imbalances.

- The net external position of a country on global banks explains the differentiated impact of changes in global banks' leverage across countries.
- Potential extensions: Welfare analysis. Equity / REER. Equity

# Appendix

#### Stylized Fact #1 (Leverage): Leverage = Assets / Equity



Figure: Individual Banks' Leverage by Rank

Note. Banks are ordered by rank from the largest (left-most) to the smallest (right-most) bank by average asset size. Each dot represents the leverage of a bank for a given quarter. Source: Capital IQ and Bloomberg. Back Regressions

#### Stylized Fact #1 (Leverage)

#### Table: Leverage Moments and Banks' Average Assets

| LEVERAGE                   | (1)                                         | (2)                                        | (3)                                       | (4)                                         | (5)                                        | (6)                                        |
|----------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|
|                            | Average                                     | Std Dev                                    | Coef. Var                                 | Average                                     | Std Dev                                    | Coef. Var                                  |
| Average Assets<br>Constant | 6.762***<br>[0.511]<br>11.006***<br>[0.209] | 2.049***<br>[0.320]<br>1.954***<br>[0.131] | 0.037**<br>[0.016]<br>0.169***<br>[0.007] | 6.508***<br>[0.777]<br>11.346***<br>[0.550] | 2.160***<br>[0.319]<br>1.806***<br>[0.226] | 0.042***<br>[0.015]<br>0.161***<br>[0.011] |
| Observations               | 298                                         | 298                                        | 298                                       | 100                                         | 100                                        | 100                                        |
| R-squared                  | 0.372                                       | 0.122                                      | 0.017                                     | 0.417                                       | 0.318                                      | 0.075                                      |

Standard errors in brackets

\*\*\* *p* < 0.01, \*\* *p* < 0.05, \* *p* < 0.1

Note. Average assets are expressed in trillion US dollars. Source: Capital IQ and Bloomberg.

#### Table: List of Global Banks

| Ticker | Bank Name                    | Country | Weight | Average Leverage | Std Dev Leverage |
|--------|------------------------------|---------|--------|------------------|------------------|
| BNPQY  | BNP PARIBAS                  | FRA     | 5.8%   | 26.9             | 5.0              |
| HSBC   | HSBC HLDGS PLC               | GBR     | 5.7%   | 16.3             | 2.6              |
| MUFG   | MITSUBISHI UFJ FINANCIAL GRP | JPN     | 5.4%   | 23.2             | 4.9              |
| DB     | DEUTSCHE BANK AG             | DEU     | 5.2%   | 34.8             | 12.3             |
| JPM    | JPMORGAN CHASE & CO          | USA     | 5.0%   | 12.8             | 2.1              |
| BCS    | BARCLAYS PLC                 | GBR     | 4.9%   | 32.1             | 13.3             |
| CITI   | CITIGROUPINC                 | USA     | 4.9%   | 12.7             | 4.1              |
| BAC    | BANK OF AMERICA CORP         | USA     | 4.8%   | 11.0             | 1.7              |
| NWG    | NATWEST GROUP PLC            | GBR     | 4.6%   | 20.3             | 6.3              |
| SMFG   | SUMITOMO MITSUI FINANCIAL GR | JPN     | 3.7%   | 26.9             | 6.8              |
| SCGLY  | SOCIETE GENERALE GROUP       | FRA     | 3.6%   | 27.9             | 5.4              |
| SAN    | BANCO SANTANDER SA           | ESP     | 3.4%   | 16.4             | 1.8              |
| WFC    | WELLS FARGO & CO             | USA     | 2.9%   | 11.2             | 1.7              |
| CSW    | CREDITSUISSE                 | CHE     | 2.7%   | 27.2             | 6.7              |
| LYG    | LLOYDS BANKING GROUP PLC     | GBR     | 2.7%   | 24.1             | 6.7              |
| MS     | MORGANSTANLEY                | USA     | 2.3%   | 19.5             | 7.9              |
| GS     | GOLDMANSACHSGP               | USA     | 2.2%   | 17.0             | 5.9              |
| RY     | ROYAL BANK OF CANADA         | CAN     | 2.1%   | 21.7             | 2.8              |
| TD     | TORONTO DOMINION BANK        | CAN     | 1.8%   | 19.4             | 3.2              |
| BBVA   | BBVA                         | ESP     | 1.8%   | 17.1             | 3.5              |

Note. This Table shows the list of the largest 20 global banks, the location of their headquarters, and summary statistics for their leverage ratio. Weight represents their average share in all 298 banks' total assets over the sample period 2000-2019. Source: Capital IQ and Bloomberg.

#### Stylized Fact #2 (Counter-party)

#### Table: BIS Reporting Banks Cross-border Positions (in value)

| Sectors                             | % Total | Instruments                      | % Total |
|-------------------------------------|---------|----------------------------------|---------|
| Claims - All sectors                | 100%    | Claims - All instruments         | 100%    |
| Claims - Banks, total               | 60%     | Claims - Loans and deposits      | 72%     |
| Claims - Non-banks, total           | 39%     | Claims - Debt securities         | 21%     |
| Claims - Unallocated by sector      | 1%      | Claims - Other instruments       | 7%      |
| Liabilities - All sectors           | 100%    | Liabilities - All instruments    | 100%    |
| Liabilities - Banks, total          | 64%     | Liabilities - Loans and deposits | 88%     |
| Liabilities - Non-banks, total      | 29%     | Liabilities - Debt securities    | 8%      |
| Liabilities - Unallocated by sector | 7%      | Liabilities - Other instruments  | 4%      |

Note. The table provides the decomposition of total claims and liabilities of all BIS reporting banks by counter-party sector and by instrument. The numbers correspond to the average over the period from 2000 to 2020. Source: BIS LBS.



#### Stylized Fact #3 (External positions)

#### Table: Net Debtors and Creditors vs Global Banks (Selected Countries)

| Country Name          | Group | Average Net Position (%GDP) | Prob. |
|-----------------------|-------|-----------------------------|-------|
| Portugal              | AE    | -43                         | 0%    |
| Spain                 | AE    | -28                         | 0%    |
| Hungary               | EMDE  | -27                         | 6%    |
| Italy                 | AE    | -26                         | 0%    |
| Croatia, Rep. of      | EMDE  | -26                         | 26%   |
| Slovenia, Rep. of     | EMDE  | -24                         | 40%   |
| France                | AE    | -18                         | 0%    |
| Australia             | AE    | -15                         | 0%    |
| Romania               | EMDE  | -14                         | 40%   |
| Turkey                | EMDE  | -12                         | 28%   |
| Poland, Rep. of       | EMDE  | -12                         | 34%   |
| Canada                | AE    | -10                         | 23%   |
| Brazil                | EMDE  | -7                          | 70%   |
| Chile                 | EMDE  | -7                          | 74%   |
| United States         | AE    | -7                          | 93%   |
| Japan                 | AE    | -4                          | 78%   |
| India                 | EMDE  | -4                          | 88%   |
| Mexico                | EMDE  | -1                          | 100%  |
| China, P.R.: Mainland | EMDE  | 0                           | 100%  |
| Germany               | AE    | 0                           | 85%   |
| South Africa          | EMDE  | 2                           | 100%  |
| Belgium               | AE    | 5                           | 84%   |
| Israel                | EMDE  | 10                          | 100%  |
| Uruguay               | EMDE  | 25                          | 100%  |

Note. Average Net Position measures the average net position vis a vis global banks over the period 2000Q1-2019Q4 as a share of GDP. Prob measures the probability that the net position vis a vis global banks is above the unconditional

average of -8% GDP. Back

#### Stylized Fact #4 (Correlations)

Figure: Correlation between Gross Banking Inflows and Outflows



Note. Source: IMF BOP. Back

# Share Foreign Currency Wholesale Funding



Chart 5: Increase in reliance on foreign currency wholesale deposits

Note. This chart shows the share of wholesale funding denominated in foreign currency for the 6 largest banks in Canada.



# Change in Assets - Decomposition



Note. This chart shows a scatter plot of change in banks'equity and banks' debt against change in banks' assets for my large panel of banks. The chart shows that balance sheet expansions and contractions tend to be done through changes in debt and not through movements in equity.

### Equilibrium: Wholesale

Segmented inter-bank market  $\rightarrow$  spread between borrowing and lending rates. The two rates are equalized when the leverage constraint of global banks does not bind anymore, i.e. when  $\lambda \geq \lambda^*$ .

#### Lemma

If  $\lambda < \lambda^*$ , then the inter-bank lending rate  $R_M^l$  is given by:

$$R'_{M} = G^{-1}\left(\frac{\lambda}{N(E_{L}+d)}\right)$$
(1)

and is increasing in  $\lambda$ . Moreover, the inter-bank borrowing rate  $R_M^d$  is given by:

$$R_{M}^{d} = G^{-1} \left( 1 - \frac{\lambda + E_{G}}{N\left(\overline{k} - E_{L} - d\right)} \right)$$
(2)

and is decreasing in  $\lambda$ . If  $\lambda \geq \lambda^*$ , then:

$$R_M^l = R_M^d$$



# Retail Market



Note This figure shows the equilibrium on the retail market for local deposits. Back

# Private Capital Does Flow to High Productivity Countries

| Average Net Private Capital Flows (%GDP) | (1)      | (2)      | (3)      | (4)      |
|------------------------------------------|----------|----------|----------|----------|
|                                          | LM       | IFS      | LM       | IFS      |
| Average GDP/capita Growth                | 0.416*** | 0.299**  | 0.832*** | 0.670*** |
| Constant                                 | [0.125]  | [0.123]  | [0.166]  | [0.187]  |
|                                          | 1.452*** | 1.611*** | -0.834   | -0.651   |
|                                          | [0.370]  | [0.371]  | [0.514]  | [0.578]  |
| Observations                             | 199      | 189      | 46       | 46       |
| R-squared                                | 0.053    | 0.030    | 0.362    | 0.226    |

Standard errors in brackets

\*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1

Note. International net private capital flows (inflows minus outflows of private capital) are positively correlated with countries' productivity growth. Source: Alfaro et al. (2014). LM: Lane and Milesi-Ferretti (External Wealth of Nations), IFS: IMF International Financial Statistics.

# **Summary Statistics**

| Variable                                  | Count | Mean  | Std. Dev. |
|-------------------------------------------|-------|-------|-----------|
|                                           |       |       |           |
| Global Banks' Median Leverage             | 3,680 | 20.19 | 2.94      |
| Global Banks' Asset Weighted Leverage     | 3,680 | 21.55 | 4.61      |
| Leverage Factor (GIV)                     | 3,128 | 1.04  | 1.62      |
| Leverage U.S. Broker Dealer               | 3,680 | 28.12 | 9.18      |
| Net Assets on Global Banks (%GDP) - Total | 3,680 | -0.10 | 0.16      |
| Net Assets on Global Banks (%GDP) - Banks | 3,680 | -0.04 | 0.11      |
| Current Account (%GDP)                    | 3,640 | -0.85 | 5.98      |
| Net Outflows (%GDP)                       | 3,638 | -0.84 | 6.43      |
| Investment (%GDP)                         | 3,059 | 23.10 | 5.16      |
| Savings (%GDP)                            | 3,039 | 22.36 | 6.60      |
| World Real GDP Growth                     | 3.634 | 0.67  | 0.50      |
| VIX                                       | 3,680 | 19.49 | 7.81      |
| Global Financial Factor                   | 3,128 | 0.14  | 1.64      |
| International Business Cycle factor       | 3,128 | 2.10  | 2.09      |
| Real GDP Growth                           | 3,128 | 0.68  | 1.19      |

### Baseline Results - Full Table

#### Table: Impact on the Current Account, Investment, and Savings

|                              | Dependent Variable (%GDP) |                       |                      |                      |
|------------------------------|---------------------------|-----------------------|----------------------|----------------------|
|                              | Current Account<br>(1)    | Net Outflows<br>(2)   | Investment<br>(3)    | Savings<br>(4)       |
| Clabal Banka Lavarana        | 0.757***                  | 1 462***              | 0 920***             | 0.096                |
| # Net Assets on Global Banks | [0.248]                   | [0.390]               | [0.293]              | [0.357]              |
| Global Banks Leverage        | 0.010                     | 0.040                 | 0.026                | 0.087                |
| Net Assets on Global Banks   | [0.055]<br>-12 894**      | [0.071]<br>-26.355*** | [0.069]<br>17 143**  | [0.056]<br>2.584     |
|                              | [5.603]                   | [9.256]               | [6.415]              | [8.178]              |
| World Real GDP Growth        | 0.015                     | -0.108<br>[0.277]     | -0.183<br>[0.486]    | -0.173<br>[0.307]    |
| VIX                          | 0.011                     | -0.014                | -0.018               | -0.008               |
| Real GDP Growth              | [0.012]<br>-0.128*        | [0.018]<br>-0.210*    | [0.022]<br>0.357***  | [0.017]<br>0.299***  |
| Lagged Dependent Variable    | 0.410***                  | 0.156***              | 0.272***             | [0.089]<br>0.145**   |
| Constant                     | [0.045]<br>-0.178         | [0.041]<br>-0.134     | [0.079]<br>16.596*** | [0.055]<br>18.566*** |
|                              | [1.040]                   | [1.4/2]               | [2.345]              | [1.605]              |
| Country FE                   | Yes                       | Yes                   | Yes                  | Yes                  |
| Country-specific Time Trend  | Yes                       | Yes                   | Yes                  | Yes                  |
| Observations<br>B annexed    | 2,756                     | 2,753                 | 2,581                | 2,561                |
| R-squared (within)           | 0.233                     | 0.526                 | 0.050                | 0.786                |

Robust standard errors in brackets

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

#### Table: Correlation GIV

| Variables              | GIV     |
|------------------------|---------|
|                        |         |
| Global Banks' Leverage | 0.829   |
|                        | (0.000) |
| VIX                    | 0.196   |
|                        | (0.109) |
| World RGDP Growth      | -0.133  |
|                        | (0.281) |
|                        |         |

Note. This table shows the correlation between the Leverage factor  $Z_t$  obtained from the GIV procedure, quarterly value of the asset weighted global banks' leverage, the VIX, and the world real GDP growth for the entire sample period. Significance levels are in parentheses.

### **Robustness Checks**

| Counter-party: All |     |        |               | Dependent Variable (% GDP) |              |            |         |
|--------------------|-----|--------|---------------|----------------------------|--------------|------------|---------|
| Leverage           | Lag | Sample | Add. Controls | Current Account            | Net Outflows | Investment | Savings |
|                    |     |        |               |                            |              |            |         |
| Median             | Yes | Entire | No            | 0.757***                   | 1.463***     | -0.820***  | 0.086   |
|                    |     |        |               | [0.248]                    | [0.390]      | [0.293]    | [0.357] |
| Median             | No  | Entire | No            | 1.261***                   | 1.707***     | -1.139***  | 0.086   |
|                    |     |        |               | [0.432]                    | [0.480]      | [0.398]    | [0.416] |
| Median             | Yes | Pre    | No            | 1.581***                   | 2.074***     | -1.510***  | 0.101   |
|                    |     |        |               | [0.435]                    | [0.659]      | [0.469]    | [0.534] |
| Median             | No  | Pre    | No            | 1.683***                   | 2.084***     | -1.563***  | 0.073   |
|                    |     |        |               | [0.419]                    | [0.664]      | [0.438]    | [0.518] |
| Median             | Yes | Post   | No            | 3.281***                   | 5.778***     | -3.014**   | 1.470   |
|                    |     |        |               | [1.104]                    | [1.338]      | [1.137]    | [1.016] |
| Median             | No  | Post   | No            | 4.126***                   | 5.688***     | -2.877***  | 1.390   |
|                    |     |        |               | [1.242]                    | [1.299]      | [1.046]    | [1.013] |
| Median             | Yes | Entire | Yes           | 1.051***                   | 1.924***     | -1.330***  | 0.002   |
|                    |     |        |               | [0.295]                    | [0.415]      | [0.397]    | [0.463] |
| Median             | No  | Entire | Yes           | 1.774***                   | 2.241***     | -1.794***  | 0.010   |
|                    |     |        |               | [0.498]                    | [0.514]      | [0.502]    | [0.536] |
| GIV                | Yes | Entire | No            | 1.014**                    | 1.939***     | -1.185***  | 0.103   |
|                    |     |        |               | [0.388]                    | [0.546]      | [0.413]    | [0.624] |
| GIV                | No  | Entire | No            | 1.608**                    | 2.200***     | -1.533***  | 0.085   |
|                    |     |        |               | [0.598]                    | [0.638]      | [0.555]    | [0.688] |
| GIV                | Yes | Entire | Yes           | 1.435***                   | 2.445***     | -1.690***  | 0.202   |
| <b>e</b> n (       |     |        |               | [0.380]                    | [0.523]      | [0.475]    | [0.719] |
| GIV                | No  | Entire | Yes           | 2.253***                   | 2.757***     | -2.133***  | 0.225   |
|                    |     |        |               | [0.589]                    | [0.615]      | [0.621]    | [0.785] |

Note. This table shows the  $\beta_2$  coefficient from regressions using the total net position against global banks.

# Change in Current Account

A positive change in leverage is associated with a higher increase in the current account in countries with higher net assets on global banks.

|                                         | (1)             | (2)              | (3)               | (4)       |
|-----------------------------------------|-----------------|------------------|-------------------|-----------|
| VARIABLES                               | $\Delta$ Curren | t Account (%GDP) | $\Delta$ Net Flow | vs (%GDP) |
|                                         |                 |                  |                   |           |
| $\Delta$ Leverage                       | -0.049          | 0.038            | 0.098             | 0.119     |
| -                                       | [0.089]         | [0.088]          | [0.091]           | [0.086]   |
| $\triangle$ Leverage #Net Assets (%GDP) | 0.086*          | 0.471***         | 0.499***          | 0.367**   |
|                                         | [0.049]         | [0.112]          | [0.165]           | [0.177]   |
|                                         |                 |                  |                   |           |
| Observations                            | 3,832           | 3,410            | 3,825             | 3,403     |
| R-squared                               | 0.631           | 0.717            | 0.405             | 0.426     |
| R-squared (within)                      | 0.631           | 0.717            | 0.405             | 0.426     |
| Controls                                | YES             | YES              | YES               | YES       |

Robust standard errors in brackets

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Note. (1) and (3): Entire sample. (2) and (4): Excluding Financial centers.

# Change in Current Account - Decomposition

Same message as before, but financial centers may play a special role.

|                                         | (5)                        | (6)     | (7)                     | (8)     |
|-----------------------------------------|----------------------------|---------|-------------------------|---------|
| VARIABLES                               | $\Delta$ Investment (%GDP) |         | $\Delta$ Savings (%GDP) |         |
|                                         |                            |         |                         |         |
| $\Delta$ Leverage                       | 0.037                      | -0.024  | -0.024                  | 0.025   |
|                                         | [0.087]                    | [0.084] | [0.041]                 | [0.045] |
| $\triangle$ Leverage #Net Assets (%GDP) | -0.078***                  | -0.178* | -0.001                  | 0.271** |
|                                         | [0.023]                    | [0.105] | [0.050]                 | [0.127] |
|                                         |                            |         |                         |         |
| Observations                            | 3,384                      | 2,934   | 3,336                   | 2,914   |
| R-squared                               | 0.655                      | 0.770   | 0.750                   | 0.778   |
| R-squared (within)                      | 0.654                      | 0.769   | 0.750                   | 0.777   |
| Controls                                | YES                        | YES     | YES                     | YES     |

Robust standard errors in brackets

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Note. (5) and (7): Entire sample. (6) and (8): Excluding Financial centers.

## Extra: Real Equity Returns

A positive change in leverage is associated with a higher increase in real asset prices in countries with higher net liabilities against global banks.

| VARIABLES                            | (9) (10)<br>Real Equity Returns |                             |
|--------------------------------------|---------------------------------|-----------------------------|
|                                      |                                 |                             |
| $\Delta$ Leverage                    | -0.465                          | -0.555*                     |
| $\wedge$ Leverage #Net Assets (%GDP) | [0.285]<br>- <b>0.248***</b>    | [0.312]<br>- <b>0.910**</b> |
|                                      | [0.040]                         | [0.396]                     |
|                                      |                                 |                             |
| Observations                         | 2,833                           | 2,383                       |
| R-squared                            | 0.487                           | 0.468                       |
| R-squared (within)                   | 0.471                           | 0.452                       |
| Controls                             | YES                             | YES                         |
| Robust standard errors in brackets   |                                 |                             |

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Note. (9): Entire sample. (10): Excluding Financial centers.